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Computer simulation of the ensemble behavior of large interacting systems 
is hampered by the relative paucity of low-energy configurations. The 
stochastic sampling must, therefore, be guided toward the capture of con- 
figurations which, though rare, are typical, in the sense of contributing 
the maximam term of the partition function, Max log ~. In a previous 
Monte Carlo study by the author, such a guidance was applied to an ab 
initio construction of lattice configurations with a stochastic chain of steps, 
the transition probability at each step depending of both near and far neigh- 
bors. This study is now put on a more systematic and broader basis. It is 
argued that any computer study of the emergence of long-range order in 
large systems must be guided by Max log ~. Thus, lattice configurations are 
often constructed by a cyclic variation, which, guided by nearest-neighbor 
interaction, tries to relax an arbitrary initial configuration toward equilib- 
rium (Metropolis). Such a relaxation may be also guided by Max log ~, 
with transition probabilities dependent on both near and far neighbors. 
Of main interest is the relevance of such a calculation for the actual relaxation 
behavior of the system, and this is discussed at some length. 
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1. I N T R O D U C T I O N  

T h e  p o w e r  o f  m o d e r n  ca lcu la t ing  m a c h i n e s  has  d r a w n  a t t e n t i o n  to the  

poss ib i l i ty  o f  app ly ing ,  as it  were ,  s ta t is t ical  m e c h a n i c s  f r o m  first  p r inc ip les :  
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the machines make it possible to construct samples of model configurations 
for a given system, providing thereby a direct simulation of its ensemble 
average behavior. As of now, only highly idealized systems can be studied 
in this manner, which hampers the comparison to experimental data, but the 
limitation will hopefully be overcome with the help of future computing 
facilities. One thing should, however, be very clearly realized. Advanced 
facilities will enable the construction of model configurations for systems 
consisting of many particles interacting with a great deal of complexity. Yet 
it will never be possible to carry out the astronomically large numbers of 
constructions for the ensemble of all the configurations, or even for any 
reasonably large part of it. One should therefore essay to find only those 
configurations that are typical of the ensemble as a whole. From this point 
of view, the situation is not anymore desperate for, as the system becomes 
macroscopically large, it appears that a single "typical" configuration 
embodies the ensemble behavior in its entirety. The computer work must, 
however, be guided explicitly toward finding these typical configurations; in 
other words, future possibilities and limitations call for a computer-oriented 
approach to the ensemble theory. In this context, some previous work of 
the author, dealing with the computer description of large systems of inter- 
acting particles involving long-range order, is briefly reviewed here and put 
(it is hoped) on a more rational basis. It is then argued that the method of 
singling out the typical equilibrium configuration for a system should also 
enable a computer study of its relaxation behaviour. 

2. THE PRINCIPLE OF M A X I M U M  TERM (TYPICAL) 
C O N F I G U R A T I O N S  

Consider the configurational partition function for a system of n 
interacting particles at thermal equilibrium 

Z = N ~  vi exp(--fiE,~) (1) 
i 

where fi = 1/kT, N is the number of configurations in the ensemble, and vi 
is their frequency at energy levels Ei �9 Of particular usefulness here will be 
the well-known (1) approximation valid for the macroscopic limit 

Z ~ N Max[vi exp(--/3Ei)] = Nui* exp(--fiEi*) (la) 

The astronomically large number of distinct configurations for an even 
moderately large system (e.g., N - -  2 ~ for the Ising lattice) rules out the 
possibility of constructing the ensemble with any imaginable computing 
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machine. An attempt to construct a representative statistical sample with the 
direct, or purely random, Monte Carlo (MC) computer technique encounters 
the following difficulty. Configurations belonging to high energy levels are 
vastly more numerous. The maximum term of Eq. (la) exemplifies such a 
behavior: v~ increases at the same rate that exp(--fiEi) decreases. To a 
significant interval of fiE~ (which is of the order of n) corresponds therefore 
an exceedingly rapid exponential variation of v~. Thus a sample picked at 
random will consist entirely of configurations I belonging to the highest, or 
group of highest, energy levels. In effect, their frequency is 

vl = MaX(Vl) ~ 1 (2) 

Hence the "pseudo-partition" function z that sums M configurations 
constructed with the direct MC method reduces to merely 

Zdireet --'~ M ~ vi exp(--/3Ei) ~ M exp(--flEi) (3) 
/ 

Because of the relative smallness of exp(--fiEi), the contribution of such 
configurations to the true partition function is, however, incomparably 
smaller than the all-important maximum term of Eq. (la). This implies that 
the purely random MC method does not enable us to capture those configu- 
rations that alone are typical of the system's behavior. The difficulty was 
recognized long ago and hence a biased MC procedure has been adopted, (~,z) 
picking configurations with the help of a suitable probability P~. In this case, 

Zbiased --~ M 2 vi'[exp(--fiEi)]/Pi (4) 
i 

the frequencies v~' in the biased sample evidently obeying 

V i '  OC ~ ' iPi  (5)  

What is perhaps not clearly realized is the following. Unless the biasing 
procedure actually manages to offset the fatal decrease of vi with increasing 
exp(--fiEi) then, similar to Eqs. (2) and (3), 

zbiasea ~ M[exp(--flEt)]/P1 ; Vz' ~ 1 (6) 

Here, Zbiased, though much larger than Zdireet, very possibly falls short of 
the maximum term of Eq. (la) and in that case, the all-important typical 
configurations still cannot be captured. 

To conclude: It seems that the attempt to get the largest possible value 
of z with a MC construction should constitute the guiding principle of the 
computer-simulated description of interacting systems. The following remarks 
should be made in this connection. 



22 Z .  A l e x a n d r o w i c z  

An invariant character of an MC sample, say with respect to Ei of the 
configurations, is due to the sharp predominance of one v1' over all the others 
in a large system (except when near phase transition); hence it is doubtful 
whether it can be considered to be indicative of the reliability of a sampling 
procedure. (~) Moreover, with a large system, whatever be the size of a sample, 
it will still constitute a ridiculously small fraction of the ensemble. The effort 
spent in trying to construct large samples can therefore be spared altogether. 
In fact, searching for a largest z, or log z, it is sufficient to construct only a 
single configuration; i.e., one assays to maximize 

log ~ = --/3E~ -- log PI 

= log Z b i a s e d  , for M = 1 (6a) 

whereas a moderately-sized sample enables us to study fluctuations. This 
does not relate to the fact that to enable the search for Max log ~ many 
configurations should possibly be constructed in correspondance to different 
Pi and v i' of  variously biased MC. One last observation: suppose log Z 
[Eq. (la)] is indeed satisfactorily approximated by log ~ [Eq. (6a), the 
substitution of N by M ~ 1 adding a constant]; in that case, 

Ei* = El 

and 

log vi* = --log PI for log ~ ~-~ Z (7) 

Statistical thermodynamics, however, relates log Z to the ensemble average 
energy, which is the same as El*, and to the entropy: 

log Z -~ --[3Ei* + (S/k) + const (8) 

Hence 

S/k = --log P~ + const for log ~ ~-~ log Z (9) 

Equation (9) provides an operational example on the equivalence of entropy 
and "bias of sampling. ''(4) 

3. D E T A I L E D  D I S C U S S I O N  OF BIASED MC M E T H O D S  

(a) To begin with, let the widely used "Metropolis ''(5) method be 
recalled. One starts from an arbitrary initial configuration and derives from 
it a sequence of other configurations with a Markov chain of steps, each 
step corresponding to flipping the spin at a lattice site, for the Ising model, 
or, displacing a molecule in a volume, for the lattice gas, etc. A step of the 
sequence is illustrated in Fig. 1 for an Ising lattice in two dimensions. 
The transition probability from an i to a j configuration corresponds to 
flipping the spin of the kth site and is proportional to the Boltzmann factor 
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Fig. 1. A schematic drawing of the Metropolis cyclic relaxation process for a lattice 
of L sites in a row. The transition probability for site k depends on charges of the four 
nearest neighbors, k -- 1, k --/2, k § 1, and k + L. 

exp(--/3 AEij). Here, AEij represents the energy difference for the two states 
of the kth site due to its different interaction with nearest neighbors k -- 1, 
k § 1, k -  L, and k § L (L being the lattice edge length). It has been 
shown (~,3~ that in the limit of ergodic behavior of long Markov chains, the 
initial configuration relaxes toward the typical configurations of Eq. (la). 
Yet, doubts have been raised with regard to the actual efficiency of the 
relaxation and whether, under unlucky circumstances, it might not become 
entrapped in semi stable states for very long durations of computing time. 
The foregoing discussion of the extremely rapid variation of vi' with a small 
difference of Ei suggests the adoption of a more extreme attitude. One should 
expect such "unlucky circumstances" to almost certainly arise while applying 
the Metropolis relaxation to large enough systems with long-range inter- 
actions, for, apparently, the method's bias does not enable us to control the 
variation of v{ with E~ in what concerns long order. Thus, consider, for 
example, the configuration of the two-dimensional Ising lattice depicted in 
Fig. 2, which might very well arise in the course of relaxation from a less 
to a more ordered state, at a temperature below the critical one. The increased 
order dictates the dissolution of  the large negative droplet immersed in the 
predominantly positive lattice. The MC relaxation, however, will proceed 
almost entirely at the droplet's surface due to the random exchange of spins 
at sites with two positive and two negative neighbors (AEij = 0). The random 
process becomes oriented toward dissolution as it arrives at sites for which 
a flip to positive is associated with AE~j < 0. But take the peeling of the 
droplet's top row of  l sites, from left to right comer, corresponding to the 
consecutive flipping of 1 spins to positive. The process requires that l -- 1 
random flips, AE~j ---- 0, happen to fall in the correct sense followed by the 
oriented step at the right corner site, where three positive neighbors are now 



24 Z.  Alexandrowicz 

/ +, . . . . .  + \ <. 
~ + . . . . . . .  + ~ , ?  

\ 
+ + + + + + + + +  

Fig. 2. A schematic representation of dissolution of the top row of a large (l ~ sites) 
negative droplet immersed in a positive lattice. The Metropolis method requires that the 
l -  1 negative spins (enclosed in the rectangle) flip to positive in succession, each with 
two positive and two negative neighbors, AE~j = 0. Only then is the succession followed 
by the (encircled) corner site flipping to positive with three positive and one negative 
neighbor, E~ < 0o 

adjacent to a negative spin, Eij < O. (Other peeling mechanisms are similar 
in this respect.) The chance of hitting it right, along the row and for all 
rows in turn, becomes increasingly slim as larger lattices and droplets are being 
treated. Clearly, the stepwise process lacks a "feeling of purpose," or a 
guiding principle which would "tell" the individual steps that in the long run, 
in view of the balance, at/~, of entropy versus energy for the entire lattice, 
it is "worthwhile" for the droplet's spins to flip to positive. In the absence of 
such guidance, the unwanted droplets will just stay on "forever." It seems, 
moreover, that other stepwise numerical calculations, molecular dynamics, 
for example, are open to a similar critique. 

(b) A recently described ab initio construction of lattice configurations, 
with the help of "stochastic models", c6-s) constitutes an attempt to utilize 
this guidance by Max log ~ [Eq. (6a)]. To circumvent relaxation, one starts 
from an empty lattice and, with a Markov chain of steps, allots definite states 
to lattice sites in some ordered succession. The description detailed here is 
limited to one particular model which has been used for the square Ising 
lattice, <~ as illustrated in Fig. 3. The terminology is of two alternative states, 
or charges, ~ = :~ 1, and the Markov chain proceeds for sites in a row from 
left to the right, and for rows from top to bottom (the rows being inter- 
connected to a spiral). The transition probability is made dependent on both 
nearest and far neighbors. Thus at a kth step of the process, one computes the 
reduced charge of the two nearest neighbors, 

~' = (crk-1 -+- ~k-L)/2 (10) 
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Fig. 3. A schematic drawing of the kth step in the ab initio construction of a square 
lattice of L sites in a row, guided by Max log ~. The transition probability for k depends 
on the past nearest neighbors k -- 1 and/c -- L (encircled) and of the more distant past 
neighbors k - - L ,  k - -  L + l ,  k - - L + 2 ,  k - - L + 3 ,  k --  l ,  k --  2, and k - - 3  
(enclosed by the rectangle). 

and a smeared-out reduced charge for a larger group of 2s -k 1 next to 
nearest neighbors, irrespective of  their sequential ordering, 

~" = ( ~ - 1  + "'" + ~ - s  + ~ - L  + "" + ~_L+~)/(2s + 1) ( 1 1 )  

Now, for a random sampling, the transition probabilities f and 1 - - f  for 
a positive and negative charge, respectively, are both equal to 1/2. For  a biased 
sampling, f should be increased in the presence of positive neighbors, ~ > 0, 
while, in complete symmetry, 1 - - f  should be increased for cr < 0. The 
separate effects of  far and near neighbors, (r' and or", are represented with the 
help of  two adjustable parameters, a and b. Specifically, taking a and b 
in the interval from zero to one, the bias is conviently given by the 
expression 

f = 1/(1 4 -a~  ~')  (12) 

Equation (12) defines a set of  3(2s -k 1) different probabilities, for nearest- 
neighbor charge (r'----1, 0, or --1 and for far-neighbor cloud charge 
increasing in (2s + 1) steps from --1 to 1. A moment 's  reflection shows 
that the equations allows for the symmetric behavior required of (1 - -  f ) .  

A choice of  particular values for a and b fixes the set of  transition proba- 
bilities, henceforth referred to as a given "stochastic model."  This enables 
us to actually carry out the biased MC construction, whereas definite states 
are alloted to n ~ L 2 lattice sites in succession. Let Pk be the probability (equal 
to one of the set o f f  or 1 - -  f )  with which the choice of a particular state has 
been made at the kth step of  the process. In the limit of  large n the ergodic 
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behavior of long Markov chains assures the probability of the various states 
at any step to tend to a constant value independent of k. Hence the product 
of all p~ gives (to within a multiplicative factor) the probability of a set of 
n steps, in which the states appear at a certain relative frequency. That set will 
be chosen "almost invariably" by a particular stochastic model. The choice 
of a state defines, however, the incremental negative and positive interaction 
energy per lattice site, -~%, for pairs of similar and dissimilar neighbor 
charges, respectively. The set of n steps therefore fixes a certain value of the 
interaction energy for the lattice, El. At correspondance, the product of 
all Pk gives the probability with which configurations of that definite energy 
are picked by the process; in brief; it is equal to PI of Eq. (6a), 

i logp1~ ~ log P1 for large n (13) 

Hence, for the stepwise constructed configurations, 

log ~ = --/3 ~ e k -- i logpT,. (14) 
k=l k=l 

where log ~ is maximum (~log  Z) for a typical configuration. Equation (14) 
enables us to calculate log ~ at given fi, for a particular stochastic model (one 
lattice configuration only needs to be constructed), notably, for a defined 
parametric dependence of the transition probabilities and specified values 
of the parameters. The search for Max log ~ is then conducted by varying the 
parameter values and the nature of the dependence; for example, the 
dependence of a' and ~" in Eq. (12) could be refined to a dependence of three 
groups of neighbors of a different proximity. 

True, even a greatly increased log ~ may be still far removed from the 
maximum value (~ log  Z), which is unknown. However, it becomes possible 
to objectively compare the results for different models, the "best results" 
corresponding to those of a highest value of log ~ at given/3. (This is important 
when studying highly idealized systems, for which no experimental data are 
available.) It appears that such best results derived with the help of very 
simple models provide quite a good description of the main features 
of cooperative behavior. This is illustrated, for example, by the results that 
have been obtained (6) for a relatively large square Ising lattice of L 2 = 3602 
sites. Figure 4 describes the dependence of the fraction of antiparallel neighbor 
pairs q (related to the interaction energy) upon the exponential "Ising 
temperature" factor exp(--2K). Figure 5 describes the long-range parameter 
R (related to the spontaneous magnetization) as a function of the reduced 
temperature T/Tc. The best results are described by the filled-in points 
(different types of points represent various stochastic models) and are seen 
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Fig. 4. The dependence of the fraction of antiparallel pairs q on K = J/kT, for the 
Ising square lattice. The solid line represents Onsager's exact solution; the circles and 
triangles, the results '6~ for various Monte Carlo model ab initio constructions, those filled 
in black signifying the overall "best"  results, i.e., of highest log ~ at given K. 

to agree quite well with the line describing Onsager's exact solution. Without 
going into details, which have been discussed elsewhere, the following aspects 
may be briefly reviewed. 
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Fig. 5. The long-range parameter R versus Ko.~/K (~T/T~) for the Ising square lattice. 
Here, K0.5 corresponds to R = 0.5 (or to K~, in effect) and equals 0.4407 and 0.428, 
respectively, for the exact theory and for the Monte Carlo model's "best"  results. ~) The 
designation of the solid line and of the Monte Carlo points is as in Fig. 4. 
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The extension of the method to other lattice systems is almost immediate. 
Thus the application to a cubic Ising lattice involves only a redefinition of 
neighbor sites. The same intuitive concepts guide the choice of the model 
transition probabilities, namely a joint dependence of nearest and far 
neighbors, aided by symmetry considerations. Indeed, the results obtained 
in three dimensions seem to be more accurate (for example, critical point 
K~ was 0.223 versus 0.2217 of series expansions). An attempt to include the 
presence of an external field, other types of interactions, etc. should also 
involve a nonessential modification only of the stochastic models. 

Furthermore, the method need not be limited to systems for which the 
lattice corresponds to any tangible physical property. The "lattization" 
is a matter of convenience, enabling one to construct the configurations of 
a system with any ordered sequence of steps. As an example, the critical 
behavior of a gas consisting of hard cubes with a square-well potential has 
been treated fairly successfully in the following manner. ~s) A cubic volume is 
cut by a large number of parallel planes into thin square slices (in actual 
execution, the thickness of a slice was 1/180 that of the hard-cube molecules). 
The guided stochastic process considers one slice after another in succession, 
deciding whether a molecule should be placed on the slice and, if so, where 
it should be located on its surface. The transition probability of a present 
choice depends on the location of molecules in several neighboring "past" 
slices. Thus the occupancy of regions of a present slice is either excluded or 
favored (to a varying degree) depending on whether a region is overlapped 
by the hard core, or by the attractive potential, of  one or several molecules 
belonging to the past slices. The term log ~ is computed very much as for the 
Ising lattice [Eq. (14)], except for the inclusion of the --~pV term for a gas 
at a given temperature and pressure. The difference worth noting is that the 
use of an arbitrary lattice (here, cutting the volume into slices) implies that 
different stochastic models might describe the same system of n particles 
with a different number of steps. In that case, log P1 has to be merely 
renormalized for the purpose of objective comparison. In yet another 
application of the method, a stochastic model has been used (7) for the 
approximate description of random chains with "excluded volume" inter- 
actions. Here, the model transition probability favors the successive linking 
of the chain segments in a forward direction: This tends to decrease the 
interaction energy (due to self-intersections) at the expense of decreased 
- - log P1 (entropy of random linking). Once again, the typical configurations 
are picked by maximizing log ~. 

It has been also noted/6,7~ that in some cases the MC construction, 
represented by a stochastic model, need not be carried out at all. Instead, 
E~ and PI can be computed from an analytical formulation of the process. 
This possibility seems to be limited to the more approximate models (except 
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for a one-dimensional system~a~), but is important in relating the guided MC 
method to theoretical treatments. For the present purpose, however, these 
and other details need not be described any further. 

4. S T O C H A S T I C  MODELS A N D  R E L A X A T I O N  

At present, we would like to consider the broad possibilities of guiding 
computer study by the maximum term principle. The following features need 
to be underlined in this connection. 

The maximization of log ~ can be carried out to advantage only with a 
quite small number of adjustable parameters, and thus the choice of different 
transition probabilities is necessarily limited. For that reason, a stochastic 
model description of a large interacting system in more than one dimension 
is always approximate. For example, the number of potentially different 
transition probabilities for the Markov chain describing the square Ising 
lattice in Fig. 3 is 2 L (all the L sites in the last, "exposed" row originate 
chains of successive interactions that reach a present site). These, however, 
are grouped together into the set of 3(2s + 1) probabilities, defined with the 
help of only two parameters ~' and ~" [Eq. (12)]. 

Notwithstanding this fact, quite shrewd guesses can be made in general 
with regard to the desired definition of the model set of transition prob- 
abilities/ 6-8~ Such guesses are aided by the intuitive understanding of what 
"goes on" at the microscopic level of a particular system. Notably, of great 
help are: the fact that a description needs to differentiate in detail various 
states of the nearest neighbors whereas far-off neighbors may be treated in 
terms of broader groupings, considerations of symmetry in space and with 
respect to an inverted sense of the interaction, and, lastly, the expected 
dependence of the probability upon multiple overlapping of a similar inter- 
action. Indeed, this shrewd definition of the parametric dependence of 
transition probabilities terminates the physicist's workday, while the further 
evolution of the "best" MC description (Max log ~) is left to the brute force 
of the calculating machine over the weekend .... 

In view of these observations, the ab initio MC construction that has 
been described at some length in the preceding section does not have to 
constitute the sole alternative enabling the computer study to be guided 
by Max log ~. True, the ab initio technique enjoys the advantage of having 
the desired configuration constructed right from the beginning of the process 
(except the starting boundary, which is irregular due to lack of past neighbors), 
with no need for any subsequent cycling. This greatly shortens the computing 
time and, for certain cases, facilitates the formulation of an analytical 
description. Yet, there are also important disadvantages. The shrewd guess 
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of a transition probability can rely on information with respect to only half 
of the environment of a present site. Thus, in the example of Fig. 3, one 
knows the charge of the "past" neighbors, k -  1, k -  2 ..... k -  L + 1, 
and K -- L, but not of the "furture" ones, k § 1, k § 2 ..... k -? L -- 1, and 
k -t- L. This lack of definite information is made up by the method's pare- 
metric maximization, which tries to allow for the average effect of past upon 
future. Still, the method remains necessarily approximate, even for a short- 
range order. Moreover, the dependence of the transition probability on only 
the past half of the environment destroys certain symmetry properties of 
the description; for example, with the model of Fig. 3, the charge correlation 
becomes unequal along the right and left diagonals. On the other hand, in 
the course of the cyclic construction (Fig. 1), the entire environment of a 
present site is known (i.e., the charge of all lattice sites, although with the 
Metropolis method, the transition probability actually depends only on the 
four, directly interacting, neighbors, k -- 1, k -- L, and k + L). Admittedly, 
the information is incomplete in another way: it is not final, as in the ab 
initio construction, but becomes modified at the subsequent steps of the 
process. The information that has been employed in the course of past 
steps is therefore rendered obsolete in the course of the transition of the entire 
lattice from one configuration to another (see the example of Fig. 2). With 
regard to short-range order, however, not too much importance should be 
attached to this disadvantage. Hence, an alternative approach worth trying is 
to combine what seems to be the best features of the two techniques, notably, 
carry out the cyclic relaxation of the Metropolis method, but define transition 
probabilities in terms of adjustable parameters depending on near and far 
neighbors [somewhat in the manner of Eq. (12)], thereafter, of course, 
adopting the guidance of Max log ~. The investigation of possible advantage 
of this approach with particular systems is now underway. 

The possibility to guide a cyclic relaxation by the Max log ~ principle 
touches, however, upon a far more important question: Can the method of 
stochastic models also be employed to advantage for a computer study of 
nonequilibrium conditions ? For that purpose, let us return to the previous 
example of a square Ising lattice (Fig. 2) undergoing a relaxation which 
begins at a configuration far removed from equilibrium. Thus, consider an 
actual relaxation process, which is due to a spontaneous flipping of spins 
at random sites of a lattice, while the whole system is in contact with a heat 
bath at ft. Suppose a model stochastic process, which flips spins at random 
sites with a Markov chain of steps, is set up to describe the actual relaxation. 
The definition of the transition probabilities for the model process (generally 
dependent on time) will be, constantly adjusted through parametric variation, 
to give a maximum incremental increase, Max(3 log ~), for the variation of 
log ~ at any stage of the process. Since S log ~ is to be computed for a number 
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number of steps n' which, on one hand, is sufficiently small to describe 
instantaneous increments while, on the other, is large enough to enable the 
ergodic behavior of the Markov chain to be effectively attained [justifying 
Eqs. (13) and (14) to be used for computing log ~], the question of incremental 
maximization has to be carefully analyzed. At present, however, let it be only 
said that although n' is required to be small relative to the lattice size n, it 
should still be large enough to cover homogeneously the microscopic variation 
of a lattice configuration, in the sense that averages over n' and over n are 
equal. (In terms of the droplet argument of Fig. 2, it is required that n' is large 
enough to include the rare corner sites, AEij < 0.) 

Now, consider the line describing the rise of ~, first for the model 
relaxation guided by Max(S log ~), from ~init to ~equil (to within a specified 
accuracy), in t steps. This line should lie above any other line describing 
in t steps the evolution from ~ii~it for an arbitrarily different model relaxation 
process, for the first line has the highest initial slope and it cannot be crossed 
over by the second line at any later stage; this would imply that at the crossing 
point, 3 log ~ for the second line is larger than for the first, which constitutes, 
however, Max(3 log ~). Hence the top value ~equu is reached fastest with 
the first line. This brings us to the conclusion that, among various model 
relaxation processes, the one guided by Max(3 log ~) provides the most 
efficient way to attain equilibrium. Is this, however, the actual relaxation 
pathway for our physical system ? For there is an important difference 
between the model and the actual process. With the former, at each stage of 
the process, the computer is ordered (by varying parameters) to derive a set 
of alternative configurations, starting from a given initial configuration. 
One of these is picked in accordance to Max(~ log ~) as the new starting 
configuration, and the relaxation continues. But is there any counterpart 
to that artificial control in the actual relaxation process ? The question can 
be subdivided into two: Is there a counterpart to having a choice of various 
alternatives ? And, if so, is the alternative chosen in accordance with 
Max(3 log ~) ? To deal with the questions, let us paraphrase what has been 
earlier, with regard to incrementing log ~ for the model process: The actual 
relaxation is considered in terms of successive intervals of n' steps (at each 
step, one site is relaxed); n' is sufficiently large to homogeneously cover local 
fluctuations or microscopic variability; hence values of log ~ can be computed 
for the originally homogeneous configuration (in the sense that any micro- 
scopic variation is repeated many times over) as well as for the later configu- 
rations at intervals of n'. With large enough systems, the microscopic 
variability becomes so small compared to the lattice size that we are free 
to require (except possibly at phase transition) that n' be also sufficiently 
small to give rise to an almost reversible change. In that case, a sequence of 
increments of n' states constitutes in effect an ensemble of configurations, 
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which offers the requisite choice of alternatives for the relaxation process. 
But will the choice proceed in accordance to a largest value of log ~ ? Recall 
that the argument for equilibrium conditions was that the ensemble of all 
configurations can be represented by a single configuration of Max log ~. It 
seems that at each instant of the relaxation, after t steps, we still deal with an 
ensemble of configurations, which, however, is restricted to only those con- 
figurations which could originate from the initial one (at t = 0), in t steps. 
This restricted ensemble can be also represented by its proper set of typical 
configurations, which give a Max(log ~)~ smaller than the equilibrium Max 
(log ~), but, the best that can be had at time t. The maximum increase of 
log ~ would therefore constitute the variation principle enabling us to charac- 
terize the actual relaxation at each instant of time. 

To conclude, the present discussion tries to explain, though it certainly 
does not claim to prove, how a mere extension of the concepts describing 
equilibrium might possibly lead to the principle of relaxation of very large 
systems being guided by Max(~ log ~). One could, of course, postulate this 
principle, which is attractive in view of the fastest attainment of equilibrium, 
and then apparently would find it related to the postulate of minimum 
production of entropy for the total system, lattice plus thermal bath. Here, 
however, we have tried to argue that a sweeping posulate might be avoided by 
a careful analysis of incremental variation for the process. 

From a more practical standpoint, let it be said that the argument 
suggests (though, once again, does not claim to prove) that model stochastic 
processes guided by Max(S log ~) should enable the description of the 
relaxation of large interacting systems. A computer method unguided by 
consideration of log ~ of the entire lattice, like the one of Metropolis or 
molecular dynamics, will satisfactorily describe the relaxation of systems 
with short-range order, but will apparently go astray in the presence of long- 
range interactions (unless impossibly large samples were to be computed and 
weighted for each stage anew). As for the practical execution of the guidance, 
the description is necessarily approximate, depending on the correctness of 
the shrewd guess of transition probabilities and on the power of the machine 
maximization. The increments for n' steps need then presumably not be taken 
too small; in fact, n' of the order of n itself appears to constitute a reasonable 
choice. Furthermore, finding the largest increment A(log ~) at each stage 
depends on the succession of all preceding stages; hence the approximate 
evaluation of the relaxation process might run astray much more easily than 
a corresponding description of an equilibrium state. As has been said 
already, the execution of the process for simpler systems is now being studied, 
in an attempt to find efficient ways to arrive at equilibrium. However, with 
regard to the study of relaxation itself, in view of the idealized simplicity of 
the system (dictated by present-day computer facilities), the author is at a 
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loss with regard to experimental data which might be compared with the 
results of the computer. 

Finally, several general remarks, in the order of their increasingly 
speculative content, should be added. 

The guidance by Max log ~, whether at equilibrium or for a relaxation, 
does not constitute a technique for saving computer time. Instead, it purports 
to enable the description of certain systems, notably large and with long-range 
interactions, which otherwise should not be amenable at all to a computer 
study. True, attaining a satisfactory description of the long-range interactions 
might be reflected by a relatively small correction of values of the thermo- 
dynamic functions, which are at any rate computed in an approximate 
manner. Except when studying phase transitions, one could doubt the worth 
of all such efforts; if, however, one is concerned with the morphology of the 
typical configurations rather than with their thermodynamic properties (for 
example, in relation to the evolution of biological, social, or cosmic organi- 
zation), it is the emergence of long-range order from apparently chaotic 
interactions which is of utmost importance. In this connection, a thought- 
provoking aspect of the relaxation being guided by Max log ~ should be made 
more explicit. It will be recalled that the informal style of discussing the 
dissolution of the droplet of Fig. 2 inevitably dipped to a teleological attitude 
of a "feeling of purpose," "telling" individual steps of the process, of what 
is "worthwhile," etc. But take an observer of this relaxation process who, 
far from being an ignoramous, knows very well all the direct interactions 
and short-range correlations for the system. Say he fixes his attention to the 
preferred sequential flipping of the spins at the surface of the droplet to 
positive, accompanied by AE~j ~ O, which has been described before in 
connection with the detailed mechanism of the droplet dissolution. The only 
thing that will escape the observer's attention is the existence of the extremely 
rare corner sites, at which the sequential flipping is accompanied by AEij  < 0, 
which drives the flipping to positive, increasing log ~ of the entire system. 
(The presence of such sites is, of course, easily inferred for the regular Ising 
lattice, but not so for some highly complex intracellular organization, for 
example.) What the observer will see is an intrinsically chaotic process being 
mysteriously guided toward a very definite goal. Depending on whether the 
"system" is considered to be intelligent or not, the observer will then attribute 
this guidance to either free will or to divine power. 
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